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Abstract

In non-parametric function estimation, providing a confidence interval with the right

coverage is a challenging problem. This is especially the case when the underlying func-

tion has a wide range of unknown degrees of smoothness. Here we propose two methods

of constructing an average coverage confidence interval built from block shrinkage es-

timation methods. One is based on the James-Stein shrinkage estimator; the other

begins with a Bayesian perspective and is based on a modification of the harmonic

prior estimator. Simulation shows that these confidence intervals have average cover-

age close to or above the nominal coverage even when the underlying function is rough

and/or the signal to noise ratio is small. Both of the confidence intervals perform

consistently well across all the investigated test functions even through these functions

have very different shapes and smoothness.

Keywords: Blockwise estimators; Confidence interval; Harmonic prior; James-Stein; Level
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1 Introduction

Confidence intervals play a central inferential role in non-parametric function estimation.

Many attempts have been made to construct confidence intervals based on different estima-

tion methods, for example, Wahba (1983) and Nychka (1988) on smoothing spline, Eubank

and Speckman (1993), Hardle and Marron (1991) on kernel estimation, Xia (1998) on local

polynomial estimation with corrected bias, Hall (1986,1988,1993) and Efron (1987) on boot-

strap confidence intervals. More recently, Barber, Nason and Silverman (2002) proposed a

method of constructing confidence intervals for a wavelet thresholding method. Mao and

Zhao (2003) studied confidence intervals based on free-knot polynomial splines.

However, constructing a confidence interval with right coverage and optimal average

length remains a challenging problem. This is especially the case when the underlying func-

tion has a wide range of unknown degrees of smoothness. We propose two methods of

constructing confidence intervals. Both of them are based on block-wise shrinkage estima-

tors. Such estimators have received a lot of attention recently in the non-parametric function

estimation context. See for example Donoho and Johnstone (1994, 1995a and 1995b), Kerky-

acharian, Picard and Tribouley (1996), Cavalier,Golubev, Picard and Tsybakov (2002) and

Cai, Low and Zhao (2000). It has been shown by Cavalier, et al., (2002) and Cai, Low and

Zhao (2000) that the estimator of the underlying function can be sharply adaptive over a

wide range of (Sobolev) smoothness classes.

We consider the nonparametric function estimation model,

Yi = f(xi) + εi, εi
iid∼ N(0, τ 2), xi = i/n, (1.1)

where f(x) is supported on [0, 1] and n is the number of data points. Our goal is to provide

a 1− α level average coverage confidence interval so that

E

(
1

n

n∑

i=1

I{f(xi) ∈ CI(xi)}
)

= 1− α. (1.2)

In words, we aim to construct a confidence interval so that on average 1− α percent of the

function will be covered. This criteria has been one popular standard for nonparametric

confidence interval construction; see for example, Wahba (1983).
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The confidence interval problem is challenging mainly because it is difficult to directly

measure the bias of the function estimate. The first confidence interval method we propose,

which is based on the blockwise James-Stein shrinkage estimator, is a construction that takes

account of combined effect of bias and variance. Basically instead of estimating variance and

bias separately, we estimate mean square error loss and use it to construct the confidence

interval. The other method involves a Bayesian point of view. We use modified harmonic

priors on each blocks. Then we calculate the posterior variance of the function estimate and

provide approximate 1− α Bayesian credible intervals.

The performance of our confidence intervals will be demonstrated through numerical

methods – comparisons with two other popular methods, confidence intervals based on the

spline estimate of Wahba (1983) and Nychka (1988) and a variance band based on local

polynomial estimators. We choose two different groups of test functions. One group con-

tains test functions similar to those in the traditional confidence intervals literature. These

functions are shown in panels (a)-(e) of Figure 3 in Section 4. The other group contains

some of the popular test functions in the nonparametric function estimation literature, see

panels (f)-(h) of Figure 3. The simulation studies in Section 4 have shown that both of our

methods provide average coverage confidence intervals with coverage very close to nominal

coverage for all the test functions and for a range of levels of signal to noise ratio.

The rest of the paper is organized as follows. In Section 2, shrinkage estimators through

orthonormal transformation are discussed. Detailed confidence interval constructions are

presented in Section 3. Comparison with other methods along with discussions is contained

in Section 4. An application to call center data is also provided in Section 4.

2 Block-wise Shrinkage Estimators

2.1 Orthonormal Transformation

Suppose we have an orthonormal basis {ϕj(xi) : j = 1, 2, · · · , n}, i.e.,

1
n

∑n
i=1 ϕj(xi)ϕk(xi) = δjk. This type of basis arises naturally when using either discrete
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wavelet transforms or discrete Fourier transforms.

Then we can write

f(xi) =
n∑

j=1

ξjϕj(xi). (2.3)

where ξj, j = 1, · · · , n are the coefficients. Similarly we can transform {Yi} accordingly. That

is

Wj =
1

n

∑

i

Yiϕj(xi).

Because {ϕj(xi) : j = 1, 2, · · · , n} is orthonormal, we can easily see that

Wj
ind∼ N(ξj, σ

2 = τ 2/n).

Hence, after the transformation, the non-parametric function estimation problem be-

comes a multivariate normal mean problem, i.e., we observe Wj
ind∼ N(ξj, σ

2 = τ 2/n) and we

try to estimate ξj.

2.2 Blocking Scheme

A Blockwise shrinkage technique is used in estimating the multivariate normal means. Ba-

sically, we partition all the {ξj} into K(n) blocks, {B1, B2, · · · , Bk, · · · , BK(n)}, where

Bk = {lk + 1, lk + 2, · · · , lk+1}.

The size of block Bk is mk = lk+1 − lk. We choose our block size to be mk = bb(n)kc, the

integer part of the b(n)k and k = 1, 2, · · · , K. Cavalier, et al., (2002) and Cai, Low and Zhao

(2000) have shown that if blocks are asymptotically of size bk with b → 1 as n →∞, then the

estimators for unknown function under integrated squared error loss are sharply adaptive

over a wide range of (Sobolev) smoothness classes. We have used b = 1/(1 + log(n)) as

suggested in Car, Low and Zhao (2000) in our simulations as well as in the real data set.
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2.3 Two Shrinkage Methods

Let wk denote the vector of observations within block Bk, that is wki
= wlk+i, i = 1, · · · ,mk.

We apply the shrinkage method within each block. Two shrinkage methods are considered.

The first method involves the James-Stein plus estimator; namely for block Bk

ξ̂JS+
k

=

(
1− cσ2(mk − 2)

||wk||2
)

+

wk,

here again mk denotes the block size and c is a constant typically between 0 and 2. Larger c

implies more shrinkage. In the simulation study below we choose c = 1.5. See Cai (1999) for

motivation of such a choice. We refer to this blockwise shrinkage method as the blockwise

James-Stein shrinkage method.

The second method is referred to as the blockwise harmonic plus shrinkage method. This

method is based on the generalized Bayes estimator using the harmonic plus prior, which

we will briefly refer to as the harmonic plus estimator. The harmonic plus prior H+ is of

the form H + βδ{0}, where δ{0} denotes the point mass at 0. Here H denotes the harmonic

prior with its density function h(ξ) = 1/||ξ||mk−2. Notice that h(ξ) is not a proper density

function because H is an improper prior; that is
∫

h(ξ)dξ = ∞. The Harmonic prior is well

known to have very desirable properties for the multivariate normal mean problem, see Stein

(1981) for details. In particular the harmonic estimator is minimax. Moreover, as a direct

implication of Brown (1971), the harmonic estimator is also admissible.

However, when ξ is close to 0, the harmonic prior has much less shrinkage effect compared

with that of the James-Stein plus method. Hence the harmonic plus prior is constructed so

that the corresponding Bayes estimator has a similar risk function to that of the James-Stein

plus estimator with c = 1. βδ{0} is added so that the prior will have more shrinkage effect

when ξ is close to 0. β can of course be thought as the prior probability that ξ = 0. It

is obvious that the larger β is, the more shrinkage the harmonic plus estimator has. We

will discuss later in detail how to choose β. For comparison of the risk functions for the

James-Stein plus with c = 1, harmonic and harmonic plus estimators, see Figure 1. Detailed

study of this type of estimators can be found in Brown and Xu (2005).
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Figure 1: Comparison of Risk Function under L2 loss for James-Stein plus, Harmonic and
Harmonic plus Estimators. Risk function is computed using Monte Carlo simulation with
100,000 repetitions.

For the blockwise harmonic plus estimator, we put independent versions of the harmonic

plus prior H+ on each block to obtain the estimator for ξ.

We will now give the analytical form of the Bayes estimator of the harmonic plus prior.

To simplify the notation, we will use m instead of mk for the block size of Bk, and omit the

subscripts on wk, etc.

Let g∗G(x) denote the marginal density function of x under prior G and ξ̂G the Bayes

estimate under prior G. Then by Brown(1971) we can write

ξ̂G = (1− ρG(||w||))w, (2.4)

where ρG(||w||) = −σ2
∂

∂||w|| (log(g∗G(w)))

||w|| . Brown and Xu (2005) give the following expressions

for g∗H .

1) When m ≥ 4 even,

g∗H(w) =
(

1

σ

)m−2
(

1√
2π

)m

||y||2−m
(
1− P||y||2/2

(
m

2
− 2

))
(2.5)
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where y = w/σ and P||w||2/2(·) is the cdf of the Poisson distribution with rate equals to

||w||2/2.

2) When m ≥ 3 odd,

g∗H(w) =
(

1

σ

)m−2
(

1√
2π

)m

||y||2−m
(
Ψ(||y||)− e−||y||

2/2Wp(||y||)
)

(2.6)

where y = w/σ, Ψ(s) =
√

2π(Φ(s) − 1/2) and Wm(s) =
∑(m−1)/2−1

j=0
2jj!

(2j+1)!
s2j+1. Here

Φ(·) is the cdf of standard normal distribution.

It is easy to see that for harmonic plus, we have

g∗H+(w) = g∗H(w) + βfξ=0(w), (2.7)

where fξ(w) = 1√
2πσ2m

exp(−||w − ξ||2/2σ2) is the density of w given ξ. Therefore, using

equation (2.5), (2.6) and (2.7), one can find that

1) When m ≥ 4 even,

ρH+(||w||)) ≡ −σ2 ·
∂

∂||w||(log(g∗H))

||w||

=
σ2(m− 2)(1− P||y||2/2(m/2− 1)) + β||y||me−||y||

2/2

σ2||y||2(1− P||y||2/2(m/2− 2)) + β||y||me−||y||2/2
, (2.8)

where y = w/σ and P||w||2/2(·) is the cdf for the Poisson distribution with rate equal to

||w||2/2.

2) When m ≥ 3 odd,

ρH+(||w||)) ≡ −σ2 ·
∂

∂||w||(log(g∗H))

||w||

=
σ2(m− 2)(Ψ(||y||)− e−||y||

2/2Wm+2(||y||)) + β||y||me−||y||
2/2

σ2||y||2(Ψ(||y||)− e−||y||2/2Wm(||y||)) + β||y||me−||y||2/2
,(2.9)

where y = w/σ, Ψ(s) =
√

2π(Φ(s)− 1/2) and Wm(s) =
∑(m−1)/2−1

j=0
2jj!

(2j+1)!
s2j+1.
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In terms of choice of β we slightly modify the basic idea in Brown and Xu (2005). They

proposed that one choose β so that the posterior probability of ξ = 0 given ||y||2 = m − 2

is 1/2, i.e., P (ξ = 0| ‖ y ‖2= m − 2) = 1/2. In other words, β can be chosen so that the

marginal density coming from the harmonic prior equals to the marginal density coming from

the point mass prior when ||y||2 = (m − 2). The risk performance of the Bayes estimator

with the chosen β can be found in Figure 1.

Because we judge it more desirable to introduce additional shrinkage, as in Cai, Low and

Zhao (2000) we choose β so that P (ξ = 0|||y||2 = c(m− 2)) = 1/2, where c = 1.5.

Thus, when β satisfies the condition P (ξ = 0| ‖ y ‖2= c(m− 2)) = 1/2, it is given by

1) when m ≥ 4 even,

β = σ2e(c(m−2))/2(c(m− 2))(2−m)/2
(
1− P(c(m−2))/2

(
m

2
− 2

))
.

2) when m ≥ 3 odd,

β = σ2e(c(m−2))/2(c(m− 2))(2−m)/2
(
Ψ(

√
c(m− 2))− e−(c(m−2))/2Wm(

√
c(m− 2))

)
.

See Figure 2 for comparison of risk functions.
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Figure 2: Comparison of Risk Function for JS Plus with c=1.5, c=1 and and Harmonic
plus Estimators with c=1.5. Risk function is computed using Monte Carlo simulation with
100,000 repetitions.
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3 Construction of Confidence Interval

3.1 Confidence Intervals using the Harmonic Plus Estimators

Here we introduce our method of constructing confidence intervals. First, we describe the

construction that is based on the harmonic plus estimator.

We produce the average coverage band by constructing 1 − α level confidence intervals

for

f(xi) =
∑

j

ξjϕj(xi),∀i.

Since the Harmonic plus estimator is Bayesian, it might be thought of as desirable to use the

HPD for the f(xi). HPD regions for the harmonic or harmonic plus are hard to compute and

have undesirable geometric form. But it is reasonable and desirable to assume approximate

normality for the posterior distribution. Such an approximation is also suggested in Berger

(1980). In order to approximate the posterior we need only to know the posterior mean and

variance. The mean is given via (2.5) and (2.6). We thus only need to find the posterior

variance of f(xi).

Since the prior distributions for different blocks are independent, the posterior distribu-

tion of ξ|w are independent across different blocks. Hence, the posterior variance of f(x)

given w can be written as

var(f(xi)|w) = var(
∑

j

ξjϕj(xi)|w) =
∑

k

var(
∑

j∈Bk

ξjϕj(xi)|wBk
),

where Bk denotes kth block and wBk
= {wi : i ∈ Bk}.

To find out the posterior variance var(
∑

j∈Bk
ξjϕj(xi)|wBk

), let us first rewrite it as

var(aBk
· ξBk

|wBk
),

where

aBk
= {ϕj(xi) : i ∈ Bk}, ξBk

= {ξi : i ∈ Bk}.

To simplify the notation, we will suppress subscripts in the following lemma:
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Lemma 3.1 Let W ∼ Nm(ξ, σ2Im) and let ξ have a spherically symmetric prior G, and a

be any m−dimensional vector. Then

var(a · ξ|w) = σ2||a||
(

1− ρ′(||w||) a · w
||a|| ||w|| − ρ(||w||)

)
, (3.10)

where

ρ(||w||) = −σ2 ·
∂

∂||w||(log(g∗G))

||w|| .

Proof: Let d = a/ ‖ a ‖ . There exists an orthonormal matrix Q such that d′Q′ = e1 =

(1, 0, 0, · · · , 0). Therefore,

var(a · ξ|w) =‖ a ‖ var(d′Q′Qξ|w) = ||a||e1var(Qξ|w)e′1,

which is just the posterior variance for the first component of Qξ. Since Q is orthonormal,

Qw ∼ N(Qξ, σ2Im). And (Qw)1 = d′w. By Brown (1971), we know

var((Qξ)1|w) = σ2

(
1− ρ′(||Qw||)(Qw)1

||Qw|| − ρ(||Qw||)
)

,

where ρ′(t) = ∂ρ(t)
∂t

. After plugging in d = a/||a|| and noticing that ||Qw|| = ||w||, we ob-

tained the desired result.

Then the 1− α level confidence interval for the harmonic plus estimator is of the form

f̂(xi)±

z1−α/2σ

√√√√∑

k

||aBk
||2

(
1− ρ′H+

k

aBk
· wBk

||aBk
|| ||wBk

|| − ρH+
k

)
, (3.11)

where z1−α/2 denotes the 1 − α/2th quantile of a standard normal distribution, ρ′H+
k(t) =

∂ρH+
k
(t)

dt
and the detailed formula is given in appendix.

3.2 Confidence Interval using James-Stein Plus Estimators

To produce an average coverage confidence interval based on the James-Stein plus estimator,

we again try to construct a 1−α confidence interval for each f(xi). However, since the James-
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Stein plus estimator is biased, instead of adding of the variances across all the blocks, we

add an estimate of the mean square errors across all the blocks to compensate for bias. That

is, we approximate

E(f̂(xi)− f(xi))
2 ≡ E

(
n∑

i=1

(aiξ̂i − aiξi)
2

)

≈
K∑

k=1

E(
∑

i∈Bk

(aiξ̂i − aiξi)
2

Our confidence interval will be of the form:

f̂(xi)± z1−α/2

√√√√
K∑

k=1

Ê(aBk
ˆξBk
− aBk

ξBk
)2. (3.12)

In order to estimate E(aBk
ˆξBk
− aBk

ξBk
)2 for each block k, we can rotate coordinates as

in the proof of lemma 3.1. If we let ζ = Qξ then we can rewrite E(a′ξ̂ − a′ξ)2 as

||a||d′Q′E(Qξ̂ −Qξ)2Qd = ||a||d′Q′E(Q̂ξ −Qξ)2Qd = ||a||E(ζ̂1 − ζ1)
2,

where again d = a
||a|| , and d′Q′ = e1 = (1, 0, 0, · · · , 0).

To estimate E(ζ̂1 − ζ1)
2, let us look at the first order expansion of ζ̂1 − ζ1. Consider

an estimator of the form ζ̂1 = (1 − ρ(||z||))z1, where zi
ind∼ N(ζi, σ

2). Then the first order

expansion of ζ̂1 − ζ1 is

ζ̂1 − ζ1 = z1 − ζ1 − ρ(||z||)z1

≈ z1 − ζ1 − ρ(||ζ||)ζ1 −
m∑

j=1

∂

∂zj

(ρ(||z||)z1)

∣∣∣∣∣∣
z=ζ

(zj − ζj)

= z1 − ζ1 − ρ(||ζ||)ζ1 − (z1 − ζ1)

[
ρ′(||ζ||) ζ2

1

||ζ|| + ρ(||ζ||)
]

−
m∑

j=2

(zj − ζj)ρ
′(||ζ||)ζ1ζj

||ζ|| (3.13)

Thus,

E(ζ̂1 − ζ1)
2

≈ σ2[(1− ρ(||ζ||)− ||ζ||ρ′(||ζ||)Υ2
1(ζ))2 + Υ2

1(1−Υ2
1)(||ζ||ρ′(||ζ||))2] + ρ2Υ2

1||ζ||2,
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where Υ2
1 =

ζ2
1

||ζ||2 . Here, both ||ζ||2 and Υ2
1 are unknown and need to be estimated. The

estimate we use here are (||z||2 −m)+ for ||ζ||2 and z1/||z|| for Υ1.

Substitute QwBk
into z to get

E(aBk
ˆξBk
− aBk

ξBk
)2 ≈ Ê(aBk

ˆξBk
− aBk

ξBk
)2

= σ2




(
1− ρH+ −

√
(||wBk

||2 −mk)+ ∗ ρJS+

(aBk
· wBk

)2

||wBk
||2

)2

+
(aBk

· wBk
)2

||wBk
||2 (1− (aBk

· wBk
)2

||wBk
||2 )(||wBk

||2 −mk)+(ρ′JS+)2

]

+ (ρJS+)2 (aBk
· wBk

)2

||wBk
||2 (||wBk

||2 −mk)+, (3.14)

This expression along with (3.12) describes the relevant intervals.

3.3 Estimating Variance

So far, we have described two constructions for non-parametric function estimator based on

blockwise shrinkage methods, assuming that we know the variance τ. In applications, τ 2 is

not usually known, however it can be estimated quite accurately and satisfactorily by using

the difference estimator proposed by Rice (1984). That is

τ̂ 2 =
1

2(n− 1)

n−1∑

i=1

(Yi+1 − Yi)
2. (3.15)

4 Empirical Results

4.1 Simulation Results

We use 8 functions to test the performance of the confidence intervals constructed based on

the James-Stein plus and the harmonic plus estimator. These functions can be divided into

two groups. One group contains test functions similar to those in the traditional confidence

intervals literature. These functions are shown in panels (a)-(e) of Figure 3. The other

group contains some of the popular test functions in the nonparametric function estimation

literature; see panels (f)-(h) of Figure 3.

For each function, we use 4 different values of signal to noise ratio (STNR), 1, 4, 16,
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Figure 3: Plots of Test Functions for the simulations

64. Here signal to noise ratio is defined as the ratio of variance of the true function to the

variance of the noise τ 2 ,
1
N

∑N
i=1(f(xi)− f)2

τ 2
.

It is easy to see that the larger the signal to noise ratio is, the easier the estimation problem

is. Therefore, given the same underlying function, the average length for the confidence

interval should be narrower with larger signal to noise ratio. See Figure 4 for illustration of

the discontinuous function with the various signal to noise ratios.

In the simulation we used the discrete wavelet transform with wavelet sym8. This is a

Symmlet with 8 parameters, 7 vanishing moments and support length 15. Detailed discus-

sion about this wavelet can be found in Daubechies (1993). Periodic extension of the data

is used in the implementation.

Table 1 contains the main information about the coverage and average width of different

confidence intervals. The average coverage and the associated average width are obtained by

averaging 1000 independent simulations. The sample size is 512. We compare our confidence

interval with two other methods. The first one is based on the smoothing spline estimator,

proposed and studied by Wahba (1983) and Nychka (1988). They view the smoothing spline

estimator as a Bayes estimator with dependent normal priors and construct Bayesian poste-
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Figure 4: Discontinuous Function with Different STNR.

rior confidence intervals. The penalty constant is selected by leave-one-out cross-validation.

The resultant confidence intervals can thus be viewed as empirical Bayes HPD regions. The

other method is based on the local linear estimator. The variance given the bandwidth is

calculated for the estimator and the confidence interval is based on its variance only, as if

the estimator were unbiased. For bandwidth selection, we use the direct plug-in method

proposed by Ruppert, Sheather and Wand (1995). Since the confidence interval for local lin-

ear estimator is just a variance band with no bias correction, we can expect that its average

length is far narrower than that of other confidence intervals, but that its coverage may fall

below the nominal value.

For a clean view of Table 1, we decide not to include the simulation standard errors.

Moreover, the standard errors are all small. For average coverage, the standard errors are

all less than 0.4 and most of them are less than 0.1. For the average length, the standard

errors are all less than 0.01. All the standard errors are decreasing when the signal to noise

ratio becomes larger, with the underlying function and construction method fixed.

From Table 1, we can see that the coverage of the James-Stein plus method and the

harmonic plus method are consistently around 95% with acceptable average length across

all the test functions and all levels of signal to noise ratio. For the local linear estimator,
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JS plus Harmonic Plus Spline Local Linear
f STNR coverage width coverage width coverage width coverage width
discon 1 96.2 2.66 98.1 2.70 79.7 0.94 85.6 1.18

4 94.7 1.43 96.8 1.41 86.6 0.68 83.1 0.61
16 93.9 0.82 95.5 0.78 91.6 0.50 83.0 0.32
64 94.2 0.48 95.9 0.45 94.7 0.37 84.9 0.22

camel 1 97.1 2.58 98.4 2.66 84.5 0.79 91.4 0.95
4 97.1 1.30 98.4 1.33 87.3 0.48 90.9 0.58
16 96.4 0.66 98.2 0.67 89.9 0.29 91.3 0.30
64 96.3 0.33 97.8 0.34 92.8 0.18 91.0 0.18

dipper 1 96.7 2.60 98.4 2.66 87.1 1.03 89.2 0.96
4 96.6 1.31 98.3 1.35 91.0 0.48 90.9 0.57
16 96.0 0.68 98.0 0.68 93.2 0.29 90.8 0.34
64 95.7 0.35 97.6 0.35 94.2 0.18 90.2 0.19

claws 1 96.3 2.84 97.9 2.81 92.9 1.62 89.0 1.80
4 96.5 1.42 97.9 1.42 94.6 0.93 89.5 1.07
16 96.4 0.73 97.7 0.72 95.2 0.52 90.8 0.60
64 95.8 0.37 97.3 0.37 95.8 0.29 92.8 0.39

corner 1 96.4 2.64 98.3 2.69 89.8 1.16 90.2 1.25
4 95.8 1.38 97.6 1.37 91.6 0.71 90.7 0.58
16 94.9 0.73 97.0 0.72 93.4 0.44 90.9 0.38
64 95.0 0.38 96.6 0.38 94.7 0.28 91.2 0.21

doppler 1 94.1 3.05 96.0 2.79 89.0 2.31 79.4 0.63
4 94.5 1.65 95.6 1.62 91.7 1.66 77.1 0.51
16 95.3 0.93 96.8 0.95 94.8 1.24 72.1 0.32
64 96.6 0.62 97.9 0.64 97.8 1.05 69.6 0.16

bumps 1 93.1 4.26 94.3 3.91 94.1 3.94 76.1 1.06
4 92.6 2.84 94.4 2.67 96.7 3.12 73.2 0.74
16 92.7 2.19 94.7 2.13 98.4 2.85 63.6 0.40
64 92.5 1.97 94.5 1.93 99.5 3.04 59.7 0.26

blocks 1 91.7 3.48 94.0 3.26 89.4 2.54 67.3 1.45
4 91.0 2.07 92.5 1.94 90.7 1.71 66.8 0.89
16 91.4 1.40 93.2 1.31 94.4 1.37 68.8 0.59
64 92.3 1.10 94.1 1.04 96.1 1.21 69.7 0.44

Table 1: Average Coverage and Length of Average Coverage Confidence Intervals. The
nominal coverage is 95%. Sample size n = 512, 1000 repetitions.
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the variance band is noticeably too narrow. This is reflected by the fact that the average

coverage is far below the nominal coverage. This is especially the case for functions that are

rougher, such as the bumps and blocks functions. It is because when the underlying function

is less smooth, the local linear estimator has larger bias and this bias is not corrected by

the variance band. The smoothing spline Bayesian confidence intervals in general performs

better than local linear, but it tends to considerably under-cover the true function values

(coverage is below 90%) when the signal to noise ratio is small.
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Figure 5: Confidence Intervals and Average Coverage of Discontinuous Function,
STNR=16:1

The underlying model for Figure 5 is the discontinuous function with signal to noise

ratio 16 to 1. The method for constructing confidence intervals is based on the James-Stein

plus estimator. The top graph shows a typical picture for the underlying function, data and

confidence intervals from the model. The bottom graph shows the coverage at each value

of xi as estimated by the Monte Carlo simulation. It is clear that the coverage around the
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two jump points is very low, and the smooth parts of the function in general have higher

coverage than 95%. The average coverage for the simulation of Figure 5 (b) is 93.9%.

A feature of our bands is that the width varies (across values of x) in response to locally

perceived smoothness of underlying function. This is reasonable. It is much more difficult to

cover parts of the function that are rough. On the other hand, the average coverage criterion

we have chosen gives up to some extent the most difficult points and aims to control only

the average coverage. For this reason, we expect non-homogenetic coverage across different

parts of the function. That is exactly what is shown in Figure 5.

Figure 5 is a typical graph in the way it shows this feature of the average coverage crite-

ria. Even though we construct a pointwise confidence interval, the coverage around the two

jump points is very low. This is typically the case for construction of confidence intervals

because of the large magnitude of bias around jump points.

4.2 Application to Call Center Data

In this section, we apply our method to construct a confidence interval for the arrival rate

of call center data that is studied in Brown, et al., (2005). The source of the data is a small

call center for one of Israel’s banks.

In this paper, we will focus on the arrival rate of telephone calls requesting basic service.

It is assumed that the number of calls arriving has an inhomogeneous Poisson process with

mean µ. The task is to provide the nonparametric function estimator and confidence interval

for this rate using our method.

The first step is to divide up the duration of the working day into relatively short blocks

of time, in our case evenly-spaced 2 minute intervals. Denote Ni ∼ Possion(µ) to be the

number of calls within time interval i. Then we transform Ni according to

Yi =
√

Ni + 1/4

so that Yi is approximately normal with mean
√

µ and almost constant variance. Then af-
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ter using our James-Stein procedure to produce a nonparametric estimator and confidence

interval, we transform everything back by taking the square. (Notice that the unroot step

does not involve the constant 1/4. Detailed discussions of the this root-unroot procedure can

be found in Brown, et al., (2010).) This reference validates the accuracy and utility of the

root-unroot procedure and also discusses the relation of this type of Poisson process analysis

to the familiar formulation for nonparametric density estimation.

The number of arriving calls with the nonparametric estimators for arrival rate and

associated confidence interval is shown by Figure 6. Note the peak in arrival rate shortly

after 10 AM and again at around 3 PM. The confidence interval makes fairly clear that

these should be considered as separate modes with a dip in between. This generally bimodal

pattern of call arrivals was noted and commented on further in Brown, et. al. (2005). Of

course, since the band in Figure 6 is an average coverage band rather than a simultaneous

coverage confidence interval it is not well formulated to provide a significance test of such

an assertion. Dumbgen and Walther (2008) and Rufibach and Walther (2009) describe a

method that could be adapted to investigate the statistical significance of these modes. In

addition, Chaudhuri and Marron (1999) discuss a different, useful perspective on the search

for modes in such data. Our curve estimate also shows a brief, local dip at about 3 pm.

The confidence interval suggests that this dip might be statistically significant, but does not

provide clear or convincing evidence of this.
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Figure 6: Confidence Interval for Arrival Rate of Call Center Data.
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5 Conclusion

We have considered two methods for producing non-parametric confidence intervals based on

blockwise shrinkage estimators. According to the simulation results, both of the confidence

intervals perform consistently well over functions with very different degree of smoothness

and various signal to noise ratios. This shows the method’s ability to adapt to unknown

smoothness. Moreover, the computation cost is very low due to the convenience of wavelet

methods and the availability of the analytical forms of the shrinkage estimators as well as

the additional feature that they do not have tuning parameters.
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A Appendix

1), When m ≥ 4 even,

ρ′H(||w||)) = σ3
[
σ2(m− 2)||y||3

(
1− P||y||2/2

(
m

2
− 2

))
p||y||2/2

(
m

2
− 1

)

+ (m− 2)β||y||mp||y||2/2

(
m

2
− 1

)
e−||y||

2/2(||y|| − 1)

+ β||y||m+1
(
1− P||y||2/2

(
m

2
− 2

))
e−||y||

2/2(m− 2− ||y||2)

− 2σ2(m− 2)||y||
(
1− P||y||2/2

(
m

2
− 2

)) (
1− P||y||2/2

(
m

2
− 1

))

− σ2(m− 2)||y||2p||y||2/2

(
m

2
− 2

) (
1− P||y||2/2

(
m

2
− 1

))

− (m− 2)β||y||m−1(m− ||y||2)
(
1− P||y||2/2

(
m

2
− 1

))
e−||y||

2/2
]

/ (σ2||y||2(1− P||y||2/2(m/2− 2)) + β||y||me−||y||
2/2)2,

where y = w/σ, pµ(·) is the Poisson probability function with mean equal to µ.

2), When m ≥ 3 odd,

ρ′H(||w||)) = σ3e−||y||
2/2

[
β||y||me−||y||

2/2(1 + ||y||wm+2(||y||))
+ σ2(m− 2)||y||2(1 + ||y||wm+2(||y||))(Ψ(||y||)− e−||y||

2/2Wm(||y||))
+ β||y||m+1(Ψ(||y||)− e−||y||

2/2Wm(||y||))(m− 2− ||y||2)
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− 2e||y||
2/2σ2(m− 2)||y||(Ψ(||y||)− e−||y||

2/2Wm(||y||))
(Ψ(||y||)− e−||y||

2/2Wm+2(||y||))
− σ2(m− 2)||y||2(1 + ||y||wm(||y||))(Ψ(||y||)− e−||y||

2/2Wm+2(||y||))
− ||y||m+2βe−||y||

2/2(1 + ||y||wm(||y||))
− (m− 2)β||y||m−1(m− ||y||2)(Ψ(||y||)− e−||y||

2/2Wm+2(||y||))
]

/ (σ2||y||2(Ψ(||y||)− e−||y||
2/2Wm(||y||)) + β||y||me−||y||

2/2)2,

where y = w/σ, Ψ(s) =
√

2π(Φ(s) − 1/2). wm(s) is the last term in Wm(s) i.e.,

wm(s) = 2(m−1)/2−1((m−1)/2−1)!
(m−2)!

sm−2. Here φ(·) is the density function of standard normal

distribution.
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